Signs of a Stranger, Deeper Side to Nature’s Building Blocks

The strange properties of superconducting materials called “cuprates” (bismuth strontium calcium copper oxide is shown here), which cannot be described by known quantum mechanical methods, may correspond to properties of black holes in higher dimensions.

The strange properties of superconducting materials called “cuprates” (bismuth strontium calcium copper oxide is shown here), which cannot be described by known quantum mechanical methods, may correspond to properties of black holes in higher dimensions.

By: Natalie Wolchover

According to modern quantum theory, energy fields permeate the universe, and flurries of energy in these fields, called “particles” when they are pointlike and “waves” when they are diffuse, serve as the building blocks of matter and forces. But new findings suggest this wave-particle picture offers only a superficial view of nature’s constituents.

If each energy field pervading space is thought of as the surface of a pond, and waves and particles are the turbulence on that surface, then the new evidence strengthens the argument that a vibrant, hidden world lies beneath.

For decades, the surface-level description of the subatomic world has been sufficient to make accurate calculations about most physical phenomena. But recently, a strange class of matter that defies description by known quantum mechanical methods has drawn physicists into the depths below.

“I’ve grown up as a physicist just living on that flatland, that 2-D space,” said Subir Sachdev, a physics professor at Harvard University who studies these strange forms of matter. Now, there is a whole new dimension to explore, he said, and “you can think of the particles as just ending on that surface.”

Of all the strange forms of matter, cuprates — copper-containing metals that exhibit a property called high-temperature superconductivity — may be the strangest. In new research published online June 24 in the Journal of High Energy Physics, physicists at the University of California-Santa Barbara have explored the deeper phenomena that they claim are connected to the perplexing “surface-level” behavior of cuprates. By focusing their calculations on that underlying environment, the researchers derived a formula for the conductivity of cuprates that was previously known only from experiments.

“The amazing thing is you start with this theory and out you get the conductivity of these strange superconductors,” said Sachdev, who was not involved with the work.

The results bolster the evidence that this new way of looking at nature’s building blocks is real and that it is “strikingly literal,” said Jan Zaanen, a theoretical physicist at Leiden University in the Netherlands.

What’s more, the results could be seen as an unusual, indirect kind of evidence for string theory — a 40-year-old framework that weaves together quantum mechanics and gravity and is as mathematically elegant and profoundly explanatory as it is unproven.

With looming questions about the nature of dark matter, the mysterious substance thought to constitute 84 percent of the mass in the universe, and the search for a “theory of everything” that mathematically describes all of nature, researchers say the findings could have sweeping implications.

“There is a realistic chance that we will make enormous progress in fundamental physics in the next couple of years,” Zaanen said. “It’s moving very, very quickly.”

Click on this picture to read full story:

abs

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s